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Hippocampal pyramidal neurons are characterized by a unique
arborization subdivided in segregated dendritic domains receiving
distinct excitatory synaptic inputs with specific properties and
plasticity rules that shape their respective contributions to synap-
tic integration and action potential firing. Although the basal
regulation and plastic range of proximal and distal synapses are
known to be different, the composition and nanoscale organiza-
tion of key synaptic proteins at these inputs remains largely
elusive. Here we used superresolution imaging and single nano-
particle tracking in rat hippocampal neurons to unveil the nano-
scale topography of native GluN2A- and GluN2B-NMDA receptors
(NMDARs)—which play key roles in the use-dependent adaptation
of glutamatergic synapses—along the dendritic arbor. We report
significant changes in the nanoscale organization of GluN2B-
NMDARs between proximal and distal dendritic segments,
whereas the topography of GluN2A-NMDARs remains similar
along the dendritic tree. Remarkably, the nanoscale organization
of GluN2B-NMDARs at proximal segments depends on their inter-
action with calcium/calmodulin-dependent protein kinase II (CaM-
KII), which is not the case at distal segments. Collectively, our data
reveal that the nanoscale organization of NMDARs changes along
dendritic segments in a subtype-specific manner and is shaped by
the interplay with CaMKII at proximal dendritic segments, shed-
ding light on our understanding of the functional diversity of hip-
pocampal glutamatergic synapses.
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Encoding and storage of memories in the hippocampus re-
quires the simultaneous collection of information from sev-

eral coactive brain areas during sensory experience. At the
cellular level, this procedure occurs through the integration by
pyramidal neurons, the principal cells of the hippocampus, of
synaptic inputs coinciding in time and/or space to shape neuronal
firing. Illustrating this complexity, hippocampal CA1 pyramidal
neurons receive sensory information through distal excitatory
inputs from the entorhinal cortex and proximal indirect excit-
atory inputs from the hippocampal CA3 area distributed along
an elaborated dendritic arbor with synapses sometimes located
hundreds of microns away from the soma (1–4). How this mul-
tiplicity of inputs combines to shape the firing activity of pyra-
midal neurons, and how sensory experience dynamically changes
their respective weight to allow memory encoding and storage
are challenging questions. While distance-dependent filtering of
signal propagation would be expected to blunt the contribution
of distal synapses to neuronal activity (5, 6), local synaptic and
dendritic compensatory mechanisms, such as scaling in the
number of alpha-amino-3-hydroxy-5-methyl-4-isoxazole pro-
pionic acid glutamate receptors (AMPARs) mediating fast glu-
tamatergic neurotransmission allow to offset the location
dependence of synaptic influence, suggesting that a fine control
of local glutamate receptor expression and organization actively
ensures the integration properties of pyramidal neurons (7–16).

Furthermore, the relative influence of glutamatergic inputs on
the firing activity of pyramidal neurons is dynamically tuned by
plasticity processes that happen to be remarkably different at
proximal and distal synapses. Calcium-permeant N-methyl-D-
aspartate glutamate receptors (NMDARs) are central actors in
these adaptations, strengthening or weakening excitatory inputs.
NMDARs are heterotetrameric cationic channels resulting from
the combination of two obligatory GluN1 subunits with two
GluN2 (A, D) and/or GluN3 (A, B) subunits (17). CA1 pyra-
midal neurons predominantly express GluN2A and GluN2B
subunit-containing receptors, which display specific biophysical,
pharmacologic, trafficking, and signaling properties. Impor-
tantly, the relative abundance of GluN2A- and GluN2B-
NMDARs shapes the range of activity-dependent long-term
synaptic adaptations supporting neuronal network maturation
and adaptation (18–28). In particular, the recruitment and acti-
vation of the Ca2+/calmodulin-dependent protein kinase II
(CaMKII) to dendritic spines by GluN2B-NMDARs appear to
be critical steps in the induction of long-term potentiation (LTP)
and the formation of new memories (29–36).
Unlike AMPAR, expression levels of NMDARs remain rela-

tively stable along the dendritic arborization of CA1 pyramidal
neurons (11, 37). However, the relative abundances of GluN2A-
and GluN2B-NMDARs diverge significantly depending on the
type of input, and NMDAR-mediated synaptic calcium influxes
increase with distance from the soma (15, 37–41). Indeed,
GluN2A-NMDARs predominate at distal inputs from the
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entorhinal cortex when GluN2B-NMDARs are in the majority at
proximal inputs from the CA3 area. Thus affects the activity-
dependent changes in the strength of these synapses and on
their respective contributions to neuronal activity, with proximal
inputs more prone to express NMDAR-dependent LTP than
distal inputs whereas the opposite holds for NMDAR-dependent
long-term depression (LTD) (38–40, 42–47). Interestingly, these
input-specific features appear to be cell-autonomous and persist
in dissociated neurons (15, 37); however, how they emerge re-
mains an open question.
The recent development of superresolution microscopy

revealed that the nanoscale organization of molecular actors at
presynaptic and postsynaptic compartments plays a major role in
controlling the efficacy and plasticity of glutamatergic synaptic
transmissions (48–57). Here we combined superresolution imag-
ing, single-particle tracking, and glutamate uncaging approaches
to investigate whether local variations in the nanoscale organiza-
tions of GluN2A- and GluN2B-containing NMDARs and their
signaling partners may contribute to the diversity of synaptic
properties observed along the apical dendritic tree of hippocampal
neurons. We reveal that the nanoscale organization of synaptic
GluN2B-NMDARs changes with distance from the soma in a
process regulated by the functional and physical interplay
with CaMKII.

Results
Distance-Dependent Regulation of GluN2-NMDAR Nanoscale Organization
and Stabilization. To explore the nanoscale organization of the two
predominant NMDAR subtypes expressed along the apical dendrites
of hippocampal pyramidal neurons, we first performed live immu-
nostaining with antibodies selective for either GluN2A- or GluN2B-
NMDAR subunits (54) (Fig. 1A). As described previously (11, 37, 58,
59), we observed a distance-dependent decrease in the size of den-
dritic spines, using GFP-Homer expression as a synaptic marker (SI
Appendix, Fig. S1A). Using soluble GFP expression as a neuronal
filling marker, proximal dendrites (defined as <40 μm away from the
soma) and distal dendrites (defined as >80 μm away from the soma)
were sequentially imaged by dSTORM (Fig. 1A). Receptor clusters
and nanodomains were segmented and quantified using tessellation-
based segmentation (60), as reported previously (54) (Fig. 1B). The
linear densities of epifluorescent clusters of GluN2A- and GluN2B-
NMDARs were not significantly different (mean ± SEM, GluN2A:
1.6± 0.35 clusters/μm, n = 8 cells; GluN2B: 1.8 ± 0.3 clusters/μm, n=
10 cells), nor were the linear densities of clusters of either subtype
when comparing proximal and distal dendritic segments (SI Appendix,
Fig. S1B). The nanoscale organization of GluN2A-NMDARs was
relatively stable throughout the dendritic tree, with similar cluster and
nanodomain areas as well as the number of localizations per cluster at
proximal and distal dendritic segments (Fig. 1 C–F and SI Appendix,
Fig. S1C), although local densities (#localizations/area) of GluN2A-
NMDAR clusters and nanodomains increased with distance (SI
Appendix, Fig. S1D). Of note, GluN2A-NMDARs showed a decrease
in the number of nanodomains per cluster at distal segments (SI
Appendix, Fig. S1E) which was associated with a 2.3-fold increase in
the number of localizations per nanodomain (Fig. 1E and SI Ap-
pendix, Table S1). In contrast, we observed larger distance-dependent
variations in GluN2B-NMDAR nanoscale organization with a signif-
icant drop in the area of clusters and nanodomains at distal locations
that was associated with an increase in the number of localizations for
both parameters, resulting in a 1.9-fold and 2.4-fold net increase in the
local densities (#localizations/area) of distal GluN2B-NMDAR clus-
ters and nanodomains, respectively (Fig. 1 C–F and SI Appendix,
Table S1). GluN2B-NMDAR clusters were also more heterogeneous
than GluN2A-NMDAR clusters at both proximal and distal segments,
as suggested by a greater dispersion in the frequency distributions of
their localizations per cluster (SI Appendix, Fig. S1C).
Using single nanoparticle tracking, we next assessed whether

these distance-dependent nanoscale organization properties

were paralleled by differences in receptor surface dynamics at
proximal and distal synapses (Fig. 1F). While the diffusion prop-
erties of synaptic YFP-GluN2A-NMDARs were comparable at
proximal and distal segments, we observed a significant decrease
in instantaneous surface diffusion coefficients together with a
twofold increase in the synaptic residency time of YFP-GluN2B-
NMDARs at distal synapses compared with proximal synapses
(Fig. 1G and SI Appendix, Table S1), indicating that GluN2B-
NMDARs are less efficiently trapped at proximal synapses.
Taken together, our results show that the nanoscopic distribution

and synaptic dynamics of NMDARs evolve in a subunit-dependent
manner as a function of distance along the dendrites of hippo-
campal neurons. While the organization and synaptic stabilization
of GluN2A-NMDARs are relatively stable throughout the dendritic
tree, local densities of GluN2B-NMDAR clusters and nano-
domains, as well as synaptic stabilization are enhanced at distal
synapses, possibly through local changes in signaling or interactions
with scaffolding partners (54, 61).

Binding to CaMKII Sculpts the Nanoscale Organization and Dynamics
of GluN2B-NMDARs. We then explored the possible mechanisms
that contribute to the distance-dependent changes in the nano-
scale organization of GluN2B-NMDARs. One of the powerful
regulators of GluN2B-NMDARs is CaMKII, which is known to
bind this receptor subtype with high affinity upon activation and to
affect its signaling and surface trafficking properties (29, 35, 62).
We investigated whether CaMKII also differentially organizes
along the dendritic tree. To this end, hippocampal neurons were
transfected with GFP-labeled CaMKII, whose nanoscale organi-
zation was defined using dSTORM (Fig. 2 A and C and SI Ap-
pendix, Fig. S2A). As suggested previously (63), CaMKII density
was lower at distal spines compared with proximal ones (Fig. 2B
and SI Appendix, Table S1). CaMKII did not appear to form
nanodomains under basal conditions; out of 193 identified clus-
ters, 131 were totally devoid of nanodomains. Moreover, 89% of
the clusters in which a nanostructuration was identified displayed
one nanodomain only, which filled the center of the cluster
(Fig. 2C). Therefore, we focused our analysis on cluster charac-
teristics (Fig. 2D and SI Appendix, Fig. S2B). The number of lo-
calizations per cluster was substantially lower at distal segments
(SI Appendix, Fig. S2B and Table S1) and was associated with a
threefold reduction in the local density of CaMKII clusters
(Fig. 2D and SI Appendix, Fig. S2B and Table S1). Thus, CaMKII
cluster density is high at proximal synapses where GluN2B-
NMDARs display low density and high surface dynamics.
To investigate whether an interplay exists between CaMKII

and GluN2B-NMDAR nanoscale organization, we transfected
and imaged hippocampal neurons with either wild-type GluN2B
(WT) or a recombinant GluN2B that is impaired for CaMKII
binding (GluN2B-RSQD) (31) and imaged the distribution of
these receptors using dSTORM (Fig. 2E). As described previ-
ously (31), WT and mutant receptors were expressed at similar
levels and did not affect the distance-dependent decrease in
spine size toward distal locations (SI Appendix, Fig. S2C).
Moreover, the distributions of the localizations per cluster
revealed a similar cluster heterogeneity in recombinant GluN2B-
WT as in endogenous GluN2B-NMDAR (SI Appendix, Fig.
S2D). Remarkably, the inability to bind CaMKII impacted the
distribution of GluN2B-NMDARs at proximal dendritic seg-
ments (Fig. 2F and SI Appendix, Fig. S2 F and G). Indeed, the
local density of GluN2B-RSQD clusters was increased (Fig. 2F
and SI Appendix, Table S1) as a result of an enhanced number of
localizations per cluster (SI Appendix, Fig. S2F and Table S1).
Concomitantly, the local density of GluN2B-RSQD nano-
domains was also increased at proximal segments compared with
WT GluN2B (Fig. 2F and SI Appendix, Table S1). The local
density of GluN2B-RSQD nanodomains was also increased at
distal dendrites, with no significant changes in the nanodomain
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Fig. 1. The nanoscale organization and diffusion properties of GluN2B-NMDARs change in a distance-dependent manner along the dendritic tree of py-
ramidal neurons. (A, Top Left) Representation of a schematic hippocampal pyramidal neuron and its dendritic arborization with proximal and distal segments.
(A, Top Right) Hippocampal neurons expressing the GluN2B subunit (insets) represent imaging regions defined as proximal (0-40 μm from cell body) and distal
(>80 μm from cell body). (A, Bottom Right) Representative images of GluN2A-NMDARs and GluN2B-NMDARs in low resolution, imaged with total internal
reflection fluorescence (TIRF) microscopy (black and white panels), and the corresponding high-resolution image obtained with direct stochastic optical
reconstruction microscopy (STORM; gold pseudocolor panels). (B) Representative drawing scheme of a NMDAR cluster segmentation resulting from SR-
Tesseler analysis. (C) Representative clusters of endogenous GluN2A-NMDAR (Top) and GluN2B-NMDAR (Bottom) at proximal (Upper) or distal (Lower)
dendritic segments obtained with SR-Tesseler. (D) Comparison of proximal and distal GluN2A- and GluN2B-NMDAR cluster areas (Clust. area; Left) and
number of localizations per cluster (# loc./clust.; Middle). The local density of GluN2B-NMDAR clusters (Local dens.; Right) corresponds to the number of
localizations per cluster divided by the respective area (in px2). (E) Comparison between proximal and distal GluN2A- and GluN2B-NMDAR nanodomain areas
(Nanod. area; Left) and number of localizations per nanodomain (# loc./nanod.; Middle). The local density of GluN2B-NMDAR nanodomains (Local dens.; Left)
corresponds to the number of localizations per nanodomain divided by the respective area (in px2). Data are represented as box-and-whisker plots: line at
median, IQR in box, whiskers represent minimum and maximum values. (F) Representative surface trajectories of WT YFP-GluN2A (GluN2AWT; blue) and YFP-
GluN2B (GluN2B WT; orange) within proximal (Top) and distal (Bottom) synapses (identified as Homer-DsRed–positive clusters; light gray), obtained using
single nanoparticle (Quantum Dot 655 [QD]) tracking. (G) Comparison between proximal (dark colors) and distal (light colors) QD-GluN2A-WT- and QD-
GluN2B-WT-NMDAR diffusion coefficients (Diff. coeff.; Top) and synaptic residency times (Syn. resid. time; Bottom). Data are presented as median ± IQR. *P ≤
0.05; **P ≤ 0.01; ****P ≤ 0.0001; no symbol, P > 0.05. Statistical details are provided in SI Appendix, Table S1.
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of interest) of CaMKII WT in proximal (dark color) or distal (light color) dendritic spines. Data are presented as individual values normalized to proximal
segments; line at the mean. (C) Representative CaMKII WT clusters within proximal (Top) and distal (Bottom) dendritic segments obtained by SR-Tesseler
analysis. (D) Local densities of CaMKII WT clusters at proximal (dark color) and distal (light color) dendritic segments. (E) Representative WT YFP-GluN2B
(GluN2B WT; Left) and CaMKII-binding mutant YFP-GluN2B-RSQD (GluN2B-RSQD; Right) clusters within proximal (Top) and distal (Bottom) dendritic segments
obtained by SR-Tesseler analysis. (F) Comparison of proximal (dark colors) or distal (light colors) local densities of WT YFP-GluN2B (2B-WT; orange) and mutant
YFP-GluN2B-RSQD (2B-RSQD; gray) clusters (Right) and nanodomains (Left). Data are presented as box-and-whisker plots: line at median, IQR in box, whiskers
represent minimum and maximum values. (G) Representative surface trajectories of WT YFP-GluN2B (GluN2B WT; orange) and mutant YFP-GluN2B-RSQD
(GluN2B-RSQD; gray) within proximal (Top; dark colors) and distal (Bottom; light colors) synapses (identified as Homer-DsRed–positive clusters; light gray),
obtained using single nanoparticle tracking. (H) Comparison between proximal (dark colors) and distal (light colors) QD-YFP-GluN2B-NMDAR (2B-WT; orange)
and QD-YFP-GluN2B-RSQD-NMDAR (2B-RSQD; gray) diffusion coefficients (Diff. coeff.; Top) and synaptic residency times (Syn. resid. time; Bottom). Data are
presented as median ± IQR. (I) Representative GluN2B-NMDAR clusters after incubation with a control peptide (TAT-NS; Top) or a CaMKII inhibitor peptide
(TAT-AIP; Bottom). (J) Local densities of GluN2B-NMDAR clusters and nanodomains at proximal segments after exposure to TAT-NS (orange) or TAT-AIP
(green). Data are presented as box-and-whisker plots: line at median, IQR in box, whiskers represent minimum and maximum values. *P ≤ 0.05; **P ≤ 0.01;
***P ≤ 0.001; ****P ≤ 0.0001; no symbol, P > 0.05. Statistical details are provided in SI Appendix, Table S1.
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number per cluster, nanodomain area, or number of localizations
(Fig. 2F and SI Appendix, Fig. S2 F and G and Table S1). Thus,
interactions with CaMKII shape the nano-organization of
GluN2B-NMDARs at proximal segments.
In line with these observations, single nanoparticle tracking

revealed that preventing the interaction with CaMKII essentially
affects GluN2B-NMDAR surface dynamics at proximal locations.
Indeed, GluN2B-RSQD had lower instantaneous surface diffusion
coefficient and surface explored values along with an increase in
residency time within synaptic areas at proximal segments when
compared with WTGluN2B-NMDARs (Fig. 2G andH). Of note,
a significant decrease in GluN2B-RSQD instantaneous surface
diffusion coefficients was also observed at distal locations, al-
though it was not associated with any change in synaptic residency
time or surface explored (Fig. 2 G and H and SI Appendix, Fig.
S2H). Collectively, these data suggest that interactions between
CaMKII and GluN2B-NMDARs play an important role in shap-
ing the nanoscale organization, surface mobility, and synaptic
trapping of receptors at proximal segments.
Does this interplay require CaMKII activity? To address this

question, we evaluated the impact of a specific inhibitor of
CaMKII, Autocamtide-2-related inhibitory peptide (TAT-AIP),
on the nanoscale organization of GluN2B-NMDARs at proximal
segments (Fig. 2 I and J and SI Appendix, Fig. S3A). TAT-
AIP–elicited inhibition of CaMKII resulted in a threefold in-
crease in cluster local densities and a twofold increase in nano-
domain local densities, respectively, compared with exposure to
a control peptide, TAT-NS (Fig. 2J and SI Appendix, Fig. S3B

and Table S1). To note, CaMKII inactivation also impacted the
local densities of clusters and nanodomains of GluN2A-
NMDARs, although to a lesser extent and without affecting
cluster and nanodomain areas or numbers (SI Appendix, Fig.
S3 B–E and Table S1), consistent with previously reported
phosphorylation-based regulations (35, 64). Taken together,
these results indicate that the nanoscale organization of
GluN2B-NMDARs at proximal segments depends on a func-
tional interplay and physical interaction with CaMKII.

Impact of the GluN2B-NMDAR/CaMKII Interplay on Long-Term
Synaptic Potentiation along the Dendritic Tree. To explore the in-
fluence of GluN2B-NMDAR nanoscale organization on long-
term plasticity rules along the dendritic tree, we expressed a
SEP-tagged GluA1 AMPA receptor subunit and used a gluta-
mate uncaging paradigm to induce LTP (61–63) at randomly
selected proximal and distally located spines (Fig. 3A), measur-
ing variations in SEP-GluA1 fluorescence intensity before and
20 min after uncaging as a readout of changes in AMPAR
numbers and synaptic strength (Fig. 3 B and C and SI Appendix,
Fig. S4A). Compared with the control condition (absence of
caged-glutamate), glutamate uncaging resulted in the potentia-
tion of 28% of the spines on average, with a mean 2.7-fold in-
crease in potentiated spines that was prevented by the addition
of AP5 and NBQX (Fig. 3B and SI Appendix, Table S1). LTP
induction efficacy was comparable at proximal and distal spines
(Fig. 3C and SI Appendix, Fig. S4B and Table S1), although 32%
and 19% of spines on average were potentiated at proximal and
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0.05. Statistical details are provided in SI Appendix, Table S1.
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distal spines, respectively. We then evaluated the impact of the
interaction between GluN2B-NMDARs and CaMKII on LTP
induction at proximal or distal sites by expressing either WT
GluN2B-NMDARs or recombinant GluN2B-RSQD (Fig. 3D
and SI Appendix, Fig. S4B). As was expected (29–36), preventing
the interaction between the two partners significantly impaired
LTP induction without completely occluding it (SI Appendix, Fig.
S4D and Table S1). Interestingly, GluN2B-RSQD expression
impaired LTP strongly at proximal spines and only moderately at
distal spines (Fig. 3E and SI Appendix, Table S1), suggesting that
the interaction between GluN2B-NMDARs and CaMKII plays a
major role in the potentiation of proximal spines.

Neuronal Activity Regulates GluN2B-NMDAR Nanoscale Organization at
Proximal Segments.Our results indicate that GluN2B-NMDARs at
proximal segments are more prone to change their nanoscale or-
ganization through interaction with intracellular partners (54). To
further explore this aspect, we tested whether a sustained decrease
in neuronal activity (TTX; 1 h) comparably impacted GluN2B-
NMDARs at proximal and distal segments (Fig. 4A and SI Ap-
pendix, Fig. S5A). We observed that inhibiting neuronal activity
increased the number of nanodomains at both locations (SI Ap-
pendix, Fig. S5C); however, blocking neuronal activity triggered

changes in the density of GluN2B-NMDAR clusters and nano-
domains at proximal segments selectively through an increase in
the number of localizations within GluN2B-NMDAR clusters and
a decrease in the area of nanodomains at proximal segments
(Fig. 4B and SI Appendix, Fig. S5B and Table S1). Of note, these
changes are reminiscent of the rearrangements observed following
CaMKII inhibition (Fig. 2 I and J and SI Appendix, Fig. S3) or
disruption of the GluN2B/CaMKII interaction (Fig. 2 E and F and
SI Appendix, Fig. S2 E and F). Thus, these results indicate that
neuronal activity is required to maintain a relatively low density of
GluN2B-NMDARs at proximal synapses.

Discussion
Hippocampal neurons receive and integrate a multitude of sig-
nals originating from synapses distributed along their dendritic
arbor. Inputs located near the soma or at distal dendritic seg-
ments have different contributions to neuronal integration
through a variety of mechanisms, including distinct NMDAR-
dependent long-term plasticity processes. Here we used a com-
bination of superresolution microscopy, single nanoparticle im-
aging, and glutamate uncaging to investigate the nanoscale
organization and dynamics of GluN2A- and GluN2B-NMDARs
along the dendritic tree of hippocampal pyramidal neurons and
potential regulatory mechanisms and impact to the neuronal
plasticity. We unveil that the nanoscale organization and surface
dynamics of GluN2B-NMDARs, but not of GluN2A-NMDARs,
changes between proximal and distal clusters with a gradual in-
crease in receptor local density from proximal to distal dendritic
segments. At proximal dendritic segments, the nanoscale orga-
nization and membrane dynamics of GluN2B-NMDARs are
shaped by a physical interplay with CaMKII. Functionally, the
nanoscale organization of GluN2B-NMDARs at proximal seg-
ments is tuned by neuronal activity and its interplay with CaM-
KII shapes activity-dependent synaptic potentiation. Thus, our
results shed new light on how GluN2B-NMDAR distribution is
regulated along the dendritic tree of hippocampal neurons and
further highlights the intimate relationship between NMDAR
dynamic organization and activity-dependent synaptic adapta-
tions.
Glutamatergic synapses are distributed along the dendritic

tree of hippocampal pyramidal cells, and mounting evidence
indicate that synapses located at different dendritic segments
display distinct morphological and functional properties (6, 65,
66). For instance, AMPAR-mediated synaptic transmission is
higher at distal synapses when compared with proximal ones, a
process that likely overcomes the dendritic filtering of excitatory
postsynaptic potentials. Consistently, different contributions and/
or compositions of NMDARs have been reported between
proximal and distal synapses (37, 38, 40). As previously described
in brain slices (11, 58, 59, 67), we confirmed that the area of the
postsynaptic density (PSD) decreased as a function of distance
from the soma. In addition, we unveiled that GluN2B-NMDARs
display different nanoscale organization and surface mobility
properties at proximal and distal synapses. At proximal dendritic
segments, the organization and dynamics involve a functional
and physical interplay between GluN2B-NMDARs and CaMKII
and is regulated by neuronal activity. Intriguingly, physical in-
teraction with CaMKII does not influence the nano-organization
of GluN2B-NMDARs at distal segments, although both proteins
are present in close proximity. Whether this results from the
lower expression levels of CaMKII at distal locations or other
mechanisms remains an open question. Of note, it has been
suggested that mechanisms of CaMKII translocation and accu-
mulation toward distal dendritic segments, through the stimu-
lation of a small number of synapses, can indeed be independent
of the binding to GluN2B-NMDARs (31, 63).
The key role of the GluN2B-NMDAR/CaMKII interaction at

proximal segments suggests that these two proteins may
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colocalize within functional nanodomains. However, when
comparing the nanoscale organization of GluN2B-NMDARs
and CaMKII, it appears that their basal distributions are dif-
ferent, irrespective of dendritic location. GluN2B-NMDARs
were found to be clustered within delimited nanodomains, as
described previously (49, 54). In contrast, CaMKII exhibited a
widespread distribution. One may suggest that only a fraction of
CaMKII coclusters with GluN2B-NMDARs. Further investiga-
tions are surely needed to shed additional light on the precise
contribution of CaMKII to the synaptic organization of GluN2B-
NMDARs and to further characterize the co-organization of
both partners.
What could be the functional impact of such variations in the

nanoscale organization of NMDARs? This question is central, as
basal GluN2B-NMDAR–mediated current and calcium transient
properties appear to be relatively stable along the dendritic arbor
of pyramidal cells (40, 41). Could changes in receptor distribu-
tion and local density within nanodomains affect NMDAR-
mediated transmission? Simulation studies seem to indicate
that NMDAR activation is not extensively impacted by their
organization into nanodomains (68), yet NMDAR currents are
negatively coupled through calcium-dependent inactivation, and
the degree of coupling is tuned by the distance between recep-
tors; that is, NMDARs in close proximity efficiently inhibit one
another (69). Thus, NMDARs at distal synapses are theoretically
more prone to calcium-dependent inactivation, particularly when
trains of action potentials trigger large local increases in intra-
cellular calcium, and this strong compaction of distal receptors
may have important consequences on NMDAR signaling.
Consistently, NMDAR-dependent synaptic plasticity rules

vary between proximal and distal synapses (1, 5, 37, 38, 40, 46).
While NMDAR-dependent LTP can successfully occur at both
proximal and distal synapses, it is more easily induced at proxi-
mal synapses than at distal synapses in brain slices (42–45, 47). In
contrast, distal synapses are more prone than proximal synapses
to express stable forms of NMDAR-dependent LTD. Although
the molecular mechanisms underpinning this disparity of long-
term plasticity properties remain elusive, the observation that
proximal and distal synapses feature different NMDAR nano-
scale organizations and that the GluN2B/CaMKII interplay dif-
ferently impacts plasticity expression at different dendritic
locations may help us understand the origins of variations in
NMDAR-dependent adaptation mechanisms.
Of interest, we recently demonstrated that manipulating the

nanoscale organization of GluN2B-NMDARs without altering
overall NMDAR-mediated currents drastically alters LTP ex-
pression (54). Besides the nanoscale density of NMDARs, it has
been further demonstrated that LTP expression also requires a
NMDAR- and mGluR5-dependent lateral escape of synaptic

GluN2B-NMDARs (62, 70). Blocking this surface relocation or
genetically preventing the interaction between GluN2B and
CaMKII prevents the activity-dependent accumulation of
CaMKII at spines and occluded LTP, raising the possibility that
GluN2B-NMDAR act as a cargo for CaMKII during synaptic
plasticity initiation (29, 32, 62, 71). Since the interaction between
GluN2B-NMDARs and CaMKII is central for the nanoscale
organization of NMDARs at proximal dendritic segments as well
as for the induction of LTP, we propose that the functional in-
terplay between GluN2B-NMDARs and CaMKII tunes LTP
through the mutual regulation of both their biophysical proper-
ties and their local trafficking. Together with past studies, these
new data fuel a model in which the nanoscale organization and
membrane dynamics of GluN2B-NMDARs are differently
set along the dendritic tree. At proximal segments, neuronal
activity would keep a large pool of GluN2B-NMDARs at low
density and in a highly dynamic state, favoring subsequent long-
term synaptic plasticity processes. Thus, depending on the lo-
calization along the dendritic arbor, the nanoscale organization
of NMDARs and associated signaling partners such as CaMKII
likely shapes the plastic behaviors of proximal and distal inputs
and tunes their leverage on neuronal integration.

Materials and Methods
Detailed descriptions of the experimental procedures and analyses are
provided in SI Appendix, Materials and Methods. In brief, hippocampal
neurons were immunostained and imaged by dSTORM for quantitative
analysis of the nanoscale organization of receptors and CaMKII. Single-
particle tracking was performed using quantum-dots coupled to anti-
rabbit secondary antibodies. LTP was evoked using local one-photon
uncaging of glutamate (20 pulses, 0.5 Hz). The use of animals for hippo-
campal culture preparation was in accordance with protocols approved by
Ethical Committee No. 50 of the University of Bordeaux, attached to the
National Center for Ethical Reflection on Animal Experiments.

Data Availability.All study data are included in themain text and SI Appendix.
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